

Compensateur - Modèle KP04

Description:

Un compensateur est toujours utilisé lorsque les vibrations doivent être absorbées dans un système.

Caractéristiques du produit:

- convient pour les fluides liquides et gazeux
- EPDM, adapté à l'eau potable
- conducteur électrique
- compensation des erreurs d'alignement, compensation des imprécisions de montage
- brides tournantes en acier ou en acier inoxydable
- OPTIONNEL avec bague de support du vide ou déflecteur

Raccordement: Construction: Pression:

DN25 – DN300 Passage droit 0 - 16 bar – selon la version

Type de construction: compensateur avec soufflet en caoutchouc

Raccordement: bride DIN EN 1092-1

Matière de la bride: acier inoxydable (1.4571 / 1.4541) et acier (électro-galvanisé) 235JR

Soufflet: Version 00 EPDM -40°C jusqu'à +100°C (à court terme jusqu'à 120°C)

Version 01 NBR -20°C jusqu'à +90°C (à court terme jusqu'à +100 C°)

Pression: PN16

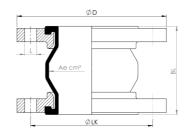
Homologations: EPDM – adapté à l'eau potable

Gammes de pression et de mouvement en fonction de la température : EPDM / NBR

Température de service max.	Plage de mouvement max.	Pression de service dépendant de la température pour le soufflet		
		PN10	PN16	
50°C	100%	10 bar	16 bar	
70°C	80%	8 bar	12 bar	
100°C	60%	6 bar	10 bar	

Possibilités d'utilisation:

EPDM	Eau, eau potable, eau industrielle froide et chaude. Eau de mer, eau de refroidissement, acides et bases faibles,
	solutions salines, alcools techniques, esters et cétones.
NBR	Produits pétroliers, mélanges carburant-éthanol et carburants DIN EN, gaz de ville et gaz naturel (PAS DE GAZ
	LIQUIDE!)


Structure du soufflet en caoutchouc :

	EPDM	NBR
Couche intérieure:	butyle (IIR)/ EPDM, sans soudure, faible diffusion	NBR (nitrile), sans couture, résistant à
		l'abrasion
Supports de pression:	Câbles textiles PA, gommés au butyle	Câbles textiles PA
Couche extérieure:	EPDM, résistant à l'ozone, résistant à la chaleur	Chloropren CR
Marquage	Anneau rouge	Anneau jaune

Dimensions:

			Soufflet		Absorption de mouvement nominale autorisée				admissible du vide)		
Diam nom		Longueur de construction	Pression nominale	Section efficace	Ax	ial ⁴	Latéral	Angulaire	sans	avec	avec
D	N	BL	PN	Ae	Δχς	∆xe	Δy	Δycc	VSD	VSD ²	VSD+S ³
mm	en	mm	bar	cm ²	mm	mm	mm	angle	mbar	mbar	mbar
25 ¹	1"	130	16	15	-30	+20	±30	±30			
32	1 1/4"	130	16	15	-30	+20	±30	±30	Max. 1000	-	
40	1 1/2"	130	16	20	-30	+20	±30	±30			
50	2"	130	16	30	-30	+20	±30	±30			
65	2 1/2"	130	16	50	-30	+20	±30	±30	-700		
80	3"	130	16	85	-30	+20	±30	±30	-600	max. -	max.
100	4"	130	16	125	-30	+20	±30	±20	-400	1000	-1000
125	5"	130	16	185	-30	+20	±30	±20	-300		
150	6"	130	16	250	-30	+20	±30	±20	-300		
200	8"	130	16	400	-25	+30	±30	±10	-300		
250	10"	130	16	600	-10	+30	±15	±5	-200		
300	12"	130	16	800	-10	+30	±15	±5	-100		

- Pour les compensateurs en caoutchouc DN25, on utilise des soufflets DN32 1) 2) 3) 4)
- VSD... Bague de support du vide en matériau 1.4571
- VSD+S... Bague de support du vide avec serrure (vissage) en 1.4571
- Absorption du mouvement axial Δxc = compression et Δxe = extension
- 5) En cas de prise de mouvement simultanée, $\Delta xc/\Delta xe$, Δy et Δa doivent être réduits proportionnellement. La somme de toutes les proportions ne doit pas dépasser 100%.

Tél: +33(0)4 28 38 01 39 Index: 03/2024 info@nieruf.fr www.nieruf.fr

Dimensions des brides:

		Bride							
Diamètre nominal		Diamètre Schéma de perçage extérieur selon EN 1092		Diamètre du cercle de perçage	Nombre de trous	Diamètre du trou	Poids		
DN D		D	PN	Lk	n	L	G		
mm	en	mm	-	mm	-	mm	kg		
25	1"	115	40	85	4	14	1,9		
32	1 1/4"	140	40	100	4	18	3,4		
40	1 1/2"	150	40	110	4	18	4,0		
50	2"	165	16	125	4	18	4,6		
65	2 1/2"	185	16	145	4	18	5,3		
80	3"	200	16	160	8	18	6,9		
100	4"	220	16	180	8	18	8,0		
125	5"	250	16	210	8	18	9,9		
150	6"	285	16	240	8	22	12,3		
200	8"	340	10	295	8	22	16,5		
250	10"	395	10	350	12	22	21,6		
300	12"	445	10	400	12	22	29,3		

Forces de déplacement:

Axiale:

DN	Forces de	Forces de déplacement (valeurs moyennes de la course complète) N/mm								
	0 bar	2,5 bar	4 bar	6 bar	10 bar	16 bar				
20	31	68	128	192	243	270				
25	31	68	128	192	243	270				
32	31	68	128	192	243	270				
40	30	66	124	186	236	261				
50	25	51	98	134	173	192				
65	24	53	100	150	190	211				
80	28	58	104	148	185	205				
100	35	71	116	206	274	304				
125	36	71	137	214	282	313				
150	49	102	189	293	390	433				
200	100	180	365	568	735	816				
250	105	207	388	609	778	864				
300	123	248	448	658	883	980				

Attention : des écarts (+/-25%) des forces de déplacement peuvent survenir en raison du changement de matériau et d'insert ainsi que des procédés de fabrication.



Latérale:

DN	Forces de	Forces de déplacement (valeurs moyennes de la course complète) N/mm								
	0 bar	2,5 bar	4 bar	6 bar	10 bar	16 bar				
20	64	125	184	240	240	300				
25	64	125	184	240	240	300				
32	64	125	184	240	240	300				
40	62	121	178	233	256	291				
50	50	65	80	105	145	205				
65	40	78	115	150	165	188				
80	35	74	136	155	173	200				
100	55	88	143	168	192	228				
125	100	200	261	293	383	518				
150	120	260	309	366	466	616				
200	323	723	836	949	1219	1624				
250	379	806	1022	1173	1479	1938				
300	392	837	1068	1216	1542	2031				

Attention : des écarts (+/-25%) des forces de déplacement peuvent survenir en raison du changement de matériau et d'insert ainsi que des procédés de fabrication.

Compensateurs, accessoires inclus:

Compensateur avec déflecteur cylindrique:

- Nécessaire en cas de fluides abrasifs ou de vitesses d'écoulement élevées
- Les dépôts dans l'arbre à soufflet sont réduits
- Le fluide s'écoule de manière plus orientée et développe moins de turbulences.

Important: L'utilisation d'un joint supplémentaire est nécessaire entre le déflecteur et la contre-bride. L'utilisation d'un déflecteur cylindrique ne permet que des mouvements axiaux.

Compensateur avec anneau de soutien du vide:

- Nécessaire en cas de fortes dépressions ou de vide complet
- Soutenir la surface intérieure de l'arbre à soufflet
- Fabriqué en acier inoxydable, comme la tôle de guidage.

Important: L'utilisation d'une bague d'appui réduit l'absorption de mouvement admissible d'environ 50%.

Options (sur demande):

- Autres longueurs sur demande
- VSD + S3
- Revêtement en PTFE
- Bridage / limiteur de longueur de la tige de traction
- Bridage des articulations
- Tubes de guidage
- Gaines de protection contre les flammes
- Capots de protection de terre
- Autres normes de brides et dimensions
- Compensateur avec déflecteur conique

Numéro d'article:

Modèle	Raccordement	Option	Soufflet	Taille
KP04	00 – Acier	0 - Standard	0 – EPDM	05 – DN25
	01 – Acier inoxydable	1 - Déflecteur	1 – NBR	06 – DN32
		2 – Anneau de		07 - DN40
		soutien au vide *		08 - DN50
				09 - DN65
				10 - DN80
				11 - DN100
				12 – DN125
				13 - DN150
				14 - DN200
				15 – DN250
				16 - DN300
Exemple r	° KP04000010:			
KP04	00		00	10

Compensateur avec bride en acier et soufflet en EPDM Raccordement: Bride en acier DIN EN 1902-1 PN16

Soufflet: EPDM Taille: DN80

Illustrations similaires, sous réserve de modifications techniques et dimensionnelles.

^{*}possible seulement à partir de DN50